Local Linear Functional Regression based on Weighted Distance-Based Regression

نویسندگان

  • Eva Boj
  • Pedro Delicado
  • Josep Fortiana
چکیده

We consider the problem of nonparametrically predicting a scalar response variable y from a functional predictor χ. We have n observations (χi, yi) and we assign a weight wi ∝ K (d(χ, χi)/h) to each χi, where d( · , · ) is a semi-metric, K is a kernel function and h is the bandwidth. Then we fit a Weighted (Linear) Distance-Based Regression, where the weights are as above and the distances are given by a possibly different semi-metric. This approach can be extended to nonparametric predictions from other kind of explanatory variables (e.g., data of mixed type) in a natural way.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of the Relationships Between Spatio-Temporal Changes of Traffic Volume and Particulate Matter-2.5 Pollutant Concentration Based on Geographically Weighted Regression (GWR) and Inverse Distance Weighting (IDW) Model: A Case Study in Tehran M

Background and Aim: High concentrations of particulate matter-25 (PM2.5) have been the cause of the unhealthiest days in Tehran, Iran in recent years. This study was conducted with the aim of the spatio-temporal analysis of traffic volume and its relationship with PM2.5 pollutant concentrations in Tehran metropolis, Tehran during 2015-2018, using the Geographic Information System (GIS). Materi...

متن کامل

Distance-based local linear regression for functional predictors

The problem of nonparametrically predicting a scalar response variable from a functional predictor is considered. A sample of pairs (functional predictor and response) is observed. When predicting the response for a new functional predictor value, a semi-metric is used to compute the distances between the new and the previously observed functional predictors. Then each pair in the original samp...

متن کامل

A matrix method for estimating linear regression coefficients based on fuzzy numbers

In this paper, a new method for estimating the linear regression coefficients approximation is presented based on Z-numbers. In this model, observations are real numbers, regression coefficients and dependent variables (y) have values ​​for Z-numbers. To estimate the coefficients of this model, we first convert the linear regression model based on Z-numbers into two fuzzy linear regression mode...

متن کامل

Modeling of temperature in friction stir welding of duplex stainless steel using multivariate lagrangian methods, linear extrapolation and multiple linear regression

In this study, the temperature in friction stir welding of duplex stainless steel has been investigated. At first, temperature estimation was modeled and estimated at different distances from the center of the stir zone by the multivariate Lagrangian function. Then, the linear extrapolation method and multiple linear regression method were used to estimate the temperature outside the range and ...

متن کامل

A MODIFICATION ON RIDGE ESTIMATION FOR FUZZY NONPARAMETRIC REGRESSION

This paper deals with ridge estimation of fuzzy nonparametric regression models using triangular fuzzy numbers. This estimation method is obtained by implementing ridge regression learning algorithm in the La- grangian dual space. The distance measure for fuzzy numbers that suggested by Diamond is used and the local linear smoothing technique with the cross- validation procedure for selecting t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008